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ABSTRACT: This technical note is an update on a continuing study, first designed and initiated by Brundage et al. over twenty years ago (1–
4), which seeks to test the community of forensic firearms examiners’ ability to associate fired bullets with the barrels through which they passed.
To date, 697 participants have utilized over 240 test sets consisting of bullets fired through 10 consecutively rifled RUGER P-85 pistol barrels.
Here, we report on the results of the ongoing “10-barrel test” up until the point in time of writing this manuscript. To analyze the totality of data
thus far collected, a Bayesian approach was selected. Posterior average examiner error rates are assigned assuming only vague prior information.
Given the data found over the course of this diverse decades-long study, our most conservative value for average examiner error rate has a poste-
rior mean of 0.053% with a 95% probability interval of [1.1 9 10�5%, 0.16%].

KEYWORDS: forensic science, consecutively rifled barrels, criteria for identification, Daubert, firearms identification, fired bullets, ballistics
imaging instrumentation, IBIS, SciClops�, scientific research, subclass characteristics, error rates, Bayesian statistics

Current practices in firearm and toolmark identification train-
ing and actual laboratory casework are based on the hypothesis
that fired bullets can be positively associated with the gun that
fired them. It is recognized that striations are caused by imper-
fections in the rifling tools used to make gun barrels during the
manufacturing process. The tools change during their use and
potentially impart a continually changing set of striations. It
would be expected therefore that the greatest amount of similar-
ity (and thus the greatest chance for identification error) would
be encountered with firearms that are consecutively rifled using
the same rifling tool. We have extensively reviewed past studies
that have been aimed at testing the veracity of this hypothesis
and thus will not reproduce the discussion. Interested readers are
directed to our previous publications (1–4).
Our work here is a large-scale expansion of the study origi-

nally presented by Brundage (1). In this update, we assess the
rate at which examiners correctly associate fired bullets with the
barrels through which they passed, given those barrels were

consecutively manufactured. The statistical model we use, which
was first proposed by Schuckers, takes into account our prior
ignorance about the rate at which examiners commit identifica-
tion errors and combines it with a sample of examiner test
results. The model also takes into account possible correlations
between the “match”/”no-match” conclusions examiners’ render
for each bullet/barrel pair in the test. Using data from a world-
wide sample of examiners, a posterior assignment of (average)
examiner error rate is produced which helps to quantify an
answer to the question: Can projectiles fired from consecutively
manufactured gun barrels be correctly associated with the barrel
through which they passed most of the time?

Methodology

This study is a continuation of that first initiated by Brundage
(1). As such, the examiner side of the “10-barrel” test procedure
already appears in the literature and it will not be repeated here.
The interested reader can refer to reference (4) for the complete
design of the study.
Table 1 lists the total number of examiners who have ever

taken the test along with counts of the inconclusive and incorrect
identifications they rendered.

Statistical Model

We are interested in assigning the probability that on average,
an examiner will call a match between a bullet and a barrel,
when in fact that is not the case. We will refer to this probability
as an average examiner error rate in that we consider the error
rate, on average, across the set of examiners tested. When error
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rates are small, as they should be for any forensic practice (and
as we observe in this study), it turns out that it can be difficult
to compute them precisely. Frequentist-based methods are
known to perform poorly in this situation (5–7). Thus, we have
opted to take a Bayesian approach from which we may infer a
reasonable assignment of average examiner error rate, paeer,
given the data we observe in this study (5,6). Below, we
describe the model, due to Schuckers, which has been shown to
render reasonable assignments for posterior error probabilities
(average examiner error rate, paeer, in this case) even when they
are very small. Schuckers method will produce a posterior distri-
bution for the average examiner error rate that also allows for
the expression of uncertainty in its value.
A Bayesian technique takes what is “known” or “believed”

about an unknown parameter (average examiner error rate, paeer,
in our case) and represents it as a prior probability distribution
p(paeer). When the data (s) are measured, all the information it
contains about paeer’s value is contained in its likelihood func-
tion or “probability model” for the data, p(s|paeer).
So the question now is, what are the data for this study? Each

time an examiner renders an opinion of “match,” they can be
correct or incorrect. We treat the outcome as a Bernoulli random
variable, xi, which can take on the value of 0 or 1. That is, for
the ith unknown bullet (i 2 {1, . . ., nj}), xi = 0 if the examiner
makes the correct “match” and xi = 1 if the examiner makes an
incorrect “match.” In symbols:

xi ¼ 1; if examiner renders incorrect ID
0; if examiner renders correct ID

�
xi�BernoulliðpaeerÞ

The actual data analyzed will be the sum of the nj Bernoulli
random variables constituting the outcome of the test for each
examiner. To make this more explicit, let xi,j represent the out-
come for the jth examiner rendering an opinion on the ith
unknown bullet. Then, sj is a random variable representing the
number of wrong IDs rendered by the jth examiner:

sj ¼
Xnj
i¼1

xi;j

If an examiner renders an opinion of match or no match for
each bullet to a barrel, then nj = 15. For this study however,
examiners were not barred from rendering an opinion of incon-
clusive. Because inconclusive is neither correct nor incorrect,
this outcome affects the total number of possible positive
match opinions an examiner could render on the test. That is,
inconclusive opinions affect max(R) (cf. Table 1). Thus, if an
examiner renders one or more inconclusive opinions, then
nj < 15.
Data for this study are the number of errors each examiner

made, sj, organized into a vector of length 697, s. Often sums

of Bernoulli outcomes are modeled as arising from a binomial
distribution. However, in our case, there can conceivably be
some correlation between the 15 matching attempts (Bernoulli
trials) each examiner undertakes; that is, an examiner’s answer
on one trial may affect their answer on another trial. Modeling
the data with only the binomial would not take this into
account.
The beta binomial distribution is a generalization of the

binomial distribution that naturally accounts for correlation
between Bernoulli trials and is the likelihood we will use to
model the number of errors in identification each examiner
commits (6):

pðsjja; b; njÞ ¼ nj
sj

� �
Cðaþ bÞ
CðaÞCðbÞ

Cðaþ sjÞCðbþ nj � sjÞ
Cðaþ bþ njÞ

There were 697 examiners who contributed to the data set,
and each examiner underwent nj, possibly correlated, Bernoulli
trials. Thus, the data for this study s are modeled as a product of
beta binomial distributions:

s�
Y697
j¼1

Beta-binomialða; b; njÞ

¼
Y697
j¼1

nj
sj

� �
Cðaþ bÞ
CðaÞCðbÞ

Cðaþ sjÞCðbþ nj � sjÞ
Cðaþ bþ njÞ

The beta binomial distribution is (usually) parameterized in
terms of two new parameters, a and b, instead of paeer. From
them, we can recover the average examiner error rate, paeer, as
follows:

paeer ¼ a
aþ b

Correlation between decisions for the jth examiner, Cj, is
modeled as follows:

Cj ¼ aþ bþ nj
aþ bþ 1

which is on a scale from 1 (no correlation between Bernoulli tri-
als) to nj (full correlation between Bernoulli trials). Note that
under this model, the only dependence of Cj on examiner j is
the number of opinions they render, nj, as a and b are averaged
over all examiners. Note also that we can reparameterize the cor-
relation for this model to be on a more familiar 0–1 scale as fol-
lows:

/ ¼ 1
aþ bþ 1

¼ Cj

aþ bþ nj

For / = 0 (Cj = 1), we recover the binomial distribution from
the beta binomial distribution. In this model, / has no explicit
dependence on the index j because any terms depending on j
cancel out of the equation (to see, this substitutes the equation for
Cj into the rightmost expression for /). Hence, the index j has
been dropped from /. For the remainder of this paper, we will
use the / coefficient as our measure for correlation.
The prior knowledge concerning paeer can be updated with the

likelihood, p(s |paeer), via Bayes theorem:

TABLE 1––Combined results of the previous Brundage study and this study.

Test Series

# Examiners
Participating

in Test

# Examiners
Reporting

Inconclusives

#Inconclusively
Identified
Bullets

#Incorrectly
Identified
Bullets

Brundage 67 1 1 0
Hamby 630 4 7 0
Totals: 697 5 8 0
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pðpaeerjsÞ ¼ pðsjpaeerÞpðpaeerÞ
pðsÞ

This equation says that everything we currently “know” about
the average examiner error rate is formed by what we believed
about it before, combined with what we learned about it from
the data. The quantity p(paeer|s) is the posterior or “updated”
probability distribution for paeer in light of the data we observe.
For the prior, we would like to assume little (there is no such

thing as a completely uninformative prior) which for us amounts
to spreading possible values for paeer fairly evenly over the inter-
val [0,1]. The prior for paeer must be specified in terms of priors
for a and b. For these, we take fairly diffuse truncated normal
distributions:

a; b�TruncNormðl;rÞ

Gaussians are proper probability densities (i.e., normalizable,
although this is not strictly necessary), and we truncate them
because a > 0 and b > 0 for the beta binomial distribution. To
maintain a and b above 0, we take as a practical truncation point
1 9 10�8. Figure 1 shows a simulation of the prior for paeer
with l = 1 and r = 15. It is fairly uninformative and has a
(prior) mean of about a 50% error rate.
These values for l and r imply a distribution for correlation

that is shown in Fig. 2. This is a fairly informative prior on /
and indicates that we initially believe that there is not much cor-
relation between the ID opinions an examiner will render. We
will call this the “low correlation prior.” A priori, we do not
really know that this is the case. In fact, we suspect that it is
not. However, we will run the posterior analysis for paeer using
this prior on / for comparison with other choices for a prior
on /.
To change the prior on /, for this study, we simply changed

the values l and r. Figure 3 shows the implied priors on paeer
and / using l = 1 and r = 3. Note the prior for paeer is essen-
tially unchanged from that shown in Fig. 1 where l = 1 and
r = 15. However, the prior on / has significantly spread out,
now with mean 0.19. We will call this the “moderate correlation
prior.” Figure 4 shows the implied priors on paeer and / using

l = 0.5 and r = 0.5. While the tails have thinned a bit, the prior
for paeer still resembles those in Figs 2 and 3. The prior mean
and median are both still also 50%. The prior for /, however,
now has a much fatter right tail than the previous priors with
significant mass from 0.6 to 0.9 (prior mean is 0.47). We will
call this the “high correlation prior.” Further discussion and jus-
tification for the chosen parameterization of this model appear
below in the section Results and Discussion.
Posterior analysis for paeer was carried out using these three

priors: “low,” “moderate,” and “high” correlation. The joint
probability density for the Schuckers model may be very com-
pactly represented as the directed acyclic graph (DAG) shown in
Fig. 5. The DAG shows visually how the data’s likelihood
depends on the parameters a and b. Since we have examiner
error data (si, i = 1 through 697), we can use it to update our
prior assumptions about a and b and hence our knowledge about
the average examiner error rate paeer.
The posteriors for a and b were determined by sampling the

joint probability density with the statistical modeling software
Stan (8). Eight chains were used with 10,000 warm-up and
10,000 sampling iterations each. After warm-up, the chains were
thinned by keeping only every 10th sample. R-hat convergence
diagnostics were all 1.0 (the chains are effectively converged)
(9). A total of approximately 7500 (marginal) samples for a and
b were drawn from the posterior using each prior. With posterior
samples of a and b in hand, the overall average examiner error
rate given the data was computed as described above.

Results and Discussion

A total of six hundred and ninety-seven (697) responses have
been received from a total of 32 countries. A laboratory noted
an inconclusive result in that they could not associate a test bul-
let with any of the known bullets because of reported damage
(1). Furthermore, two of the examiners taking the test reported
insufficient individual characteristics for two of the bullets in
their particular test sets. They noted that they arrived at their
decision because of tank rash on the bullets (2–4). Finally, two
trainee examiners reported that they could not make associations
for 5 of the unknown bullets across their test sets. The first

FIG. 1––Simulation of the low-correlation prior for average examiner
error rate: paeer, with l = 1 and r = 15. Prior mean and median are both
approximately 50%.

FIG. 2––“Low-correlation prior”: Simulation of the prior for correlation
between Bernoulli trials: /, with l = 1 and r = 15. Prior mean = 0.05,
prior median = 0.04.
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trainee examiner could not associate one bullet, and the second
trainee could not associate four bullets. In each instance, the
examiners reported their findings as inconclusive. No misidenti-
fications were found for any of the above iterations of the “10-
barrel test.”
Eight test sets were also examined using “ballistics” imaging

equipment. The sets were examined using the following semiau-
tomated systems:
• Intelligent Automation’s SciClopsTM—Maryland, United

States (one set);

• Automated Land Identification System (ALIS)—Tokyo,
Japan (one set);

• Integrated Ballistics Identification System (IBIS)TM—Georgia,
United States (one set);

• BulletTRAX-3DTM - Forensic Technology—Montreal, Canada
(two sets);

• National Institute of Standards and Technology (NIST)—
Maryland, United States (two sets);

• PLu neox Sensofar 3DTM—Alabama Department of Forensic
Sciences (one set);

• EVOfinder Scan BiTM, Forensic Institute, Zurich, Switzerland
(one set);

• BalScanTM, Forensic Institute, Czech Republic (one set);
• BulletTRAX-HD3DTM—National Forensic Science Services,

Ladyville, Belize (one set).

The operators of each system reported correct answers. As
a side note, this subset of data provided by the semiautomated
systems indicates that they can be helpful to the forensic
examiner and effective when properly used by an experienced
operator.

Evaluation

Background information was provided on approximately 630
of the questionnaires. Responses were obtained from 32

FIG. 3––“Moderate-correlation prior”: Simulation of the prior for paeer and φ, with l = 1 and r = 3. Prior mean/median on paeer is 50%/50%. Prior mean/
median on / is 0.19/0.16.

FIG. 4––“High-correlation” prior: Simulation of the prior for paeer and φ, with l = 0.5 and r = 0.5. Prior mean/median on paeer is 50%/50%. Prior mean/
median on / is 0.47/0.45.

FIG. 5––DAG for the Schuckers’ probabilistic model of error rate. Param-
eters l and r are fixed and taken to be (1, 15) “low-correlation prior,” (1,
3) “moderate-correlation prior,” and (0.5, 0.5) “high-correlation prior.”
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countries on four continents. Participants from the following
countries contributed to this worldwide research project: Algeria,
Australia, Barbados, Belgium, Belize, Botswana, Canada, China,
Czechoslovakia, Germany, Greece, Israel, Jamaica, Japan, Jor-
dan, Mexico, the Netherlands, New Zealand, Norway, Pakistan,
Palestine, Panama, the Philippines, Saudi Arabia, Singapore,
Switzerland, South Africa, Thailand, Trinidad and Tobago, the
United Arab Emirates, the United Kingdom, and the United
States. In the United States, responses were received from exam-
iners in 49 states and the territories of Guam and Puerto Rico.
Several states and/or provinces from Australia and Canada sub-
mitted responses as well. Demographic data of this continued
work have not significantly changed from those of previously
reported iterations. We refer the interested reader to (4) for the
complete information.

Analysis of Average Examiner Error Rate

Empirically no errors were made in this aggregate 10-barrel
study. A total of five examiners called eight inconclusives
between them. The goal of this study is now to take a principled
probabilistic approach to infer what the data say about the over-
all examiner average error rate paeer.
Note for any high-performance “classifier,” the count of errors

made will be low. However, in this situation, that is, when
examiners make few to no errors, the theoretical mean error rate
becomes difficult to determine because it is so small. In fact,
classic frequentist-based interval estimates completely fail in this
situation without ad hoc corrections (5). For this reason, we have
opted for the Schuckers model presented in the section
Methods (6).
Inconclusive opinions were not forbidden as responses for

test participants. The problem with inconclusives in a binary
decision paradigm is that they do not neatly fit into either the
“correct” or “incorrect” categories. They are not wrong deci-
sions in that it was felt by the examiner that no decision
could be made. One could count them as technically “cor-
rect,” but this is not without criticism, not least of which
because it can lead to an underestimation of average examiner
error rate. In this study, we compromise between the two
extremes and do not consider them in the analysis. This
affects the number of decisions made, nj, by examiners who
rendered them. It has the penalizing affect of decreasing the
decision sample size for the given examiner and therefore
contributes to increasing the uncertainty on the average exam-
iner error rate by widening its posterior distribution. It is not
as penalizing, however, as counting inconclusive responses as
incorrect, which they are not. For respondents who rendered
an ID on each test exemplar (correct or incorrect), nj = 15.
For the five participants who rendered inconclusive opinions,
the nj’s were equal to 14, 13, 13, 14, and 11, respectively
(cf. second paragraph of Results and Discussion section).

Table 2 summarizes the posterior average examiner error rate
probabilities paeer|s under assumptions of “low,” “moderate,” and
“high” correlation between responses for each examiner.
The intervals presented in Table 2, and throughout the paper,

all represent the highest (posterior or prior) density set with 95%
probability. Note these probability intervals are also commonly
referred to as credibility intervals. That is, they are the narrowest
regions that encompass paeer|s with 95% posterior probability. A
graphical summary of these results appears in Fig. 6. The whis-
kers of the plots range over the support for paeer|s resulting from
the MCMC calculation. The thick black vertical lines represent
the 95% highest posterior density sets indicating the narrowest
posterior region where we believe the average examiner error
rate lies with 95% probability. The first thing to note is that
while the posterior mean/median average assignments are all
low, they do increase with increasing correlation. We can see
though from Fig. 6 that this effect is relatively small. The most
conservative assignment is that which results from a “high-corre-
lation” prior assumption. Those posterior quantities are a poste-
rior mean average examiner error rate of 0.053% with a 95%
probability interval of [1.1 9 10�5%, 0.16%].
It is also interesting to examine what the data have to say

about our prior beliefs on correlation between responses for each
examiner, /. As a matter of note, we did attempt to parameterize
this model for average examiner error rate directly in terms of
paeer and /, instead of a and b. This would allow putting expli-
cit priors on /, for example a “uninformative” wide distribution
such as Uniform (0,1). Unfortunately, convergence of the
MCMC chains was extremely slow and the resulting posterior
samples were highly correlated leading to very low effective
posterior sample sizes. For this reason, we used the (typical) a
and b parameterization. Still though under this parameterization,
wide “uninformative” priors could be placed on hyperparameters
l and r. This also leads to extremely slow convergence and
highly correlated posterior samples. Thus, we chose to examine
the level of correlation (/) coarsely in terms of “low correla-
tion,” “moderate correlation,” and “high correlation” by choosing
appropriate values for fixed hyperparameters l and r. Table 3
lists the prior summaries for /, to reiterate what we mean by
“low,” “moderate,” and “high” correlation.
Figure 7 shows several violin plots, which display the effect

on the probability density for / as we introduce the data and
move from prior to posterior beliefs. The first thing to note is
that the posterior for / is fairly similar to the prior whether or
not we initially believe there is “low,” “moderate,” or “high”
levels of correlation. This essentially means that the data are not
able to inform our opinions about the correlation between exam-
iner responses in this study. In such a case, it is probably best
then to be conservative and a priori assume there is a moderate
or high amount of correlation. Thus, paeer|s with an a priori
“high correlation” / represents our best assessment for average
examiner error rate given the data thus far obtained.

TABLE 2––Summary of posterior results for paeer|s: inferred average examiner error rate-based responses data for the test shown in Table 1.

“Low Correlation” Prior “Moderate Correlation” Prior “High Correlation” Prior

Mean paeer|s 0.015% 0.026% 0.053%
Median paeer|s 0.010% 0.017% 0.036%
Probability interval*,† paeer|s [2.5 9 10�6%, 0.043%] [3.5 9 10�6%, 0.080%] [1.1 9 10�5%, 0.16%]

*These are the 95% highest posterior density intervals.
†Also commonly called a credibility interval.
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Conclusion

The design of this multidecade study was intended to explore
whether examiners and researchers in forensic firearms analysis
could accurately identify 15 “unknown” bullets, obtained by test
firing 10 consecutively rifled semiautomatic pistol barrels. A
total of 697 completed tests have been received up until this

point in time, which includes sixty-seven responses from exam-
iners who participated in the original study, by Brundage. Of the
10,455 unknown bullets examined, three takers of the test
reported insufficient individual characteristics for two of the test
bullets and two trainees could not associate five of the test bul-
lets to their known counterpart bullets. The trainee examiners
reported their findings as inconclusive. The remaining 10,447
“unknown” bullets were correctly identified by participants to
the provided “known” bullets. No misidentifications have been
reported up until this point. Based on these empirical results, we
infer this is due to the efficacy of the training and procedures
used to ascribe bullets fired from consecutively rifled barrels.
The lack of actual errors makes it difficult to calculate the true

error rate. For purposes of discussion—and considering that the
Daubert legal ruling in the United States discusses an “error”
rate, we decided to exploit an advanced Bayesian technique due
to Schuckers and determine a reasonable assignment of average
examiner error rates given our observations.
This study shows that there are identifiable features on the

surface of bullets that may link them to the barrel that fired
them. Errors due to subclass characteristics, which one could
conjecture would be a significant issue when consecutively rifled
barrels are involved, have not been a problem for the examiners
who participated in the “10-barrel test.” Overall, the study as
reported up until this point in time finds the identification pro-
cess has an extremely low error rate if the fired bullets are in
good condition and the examiners have been trained under cur-
rently accepted regimes (10). In fact, this error rate is too low to
empirically be found and must be inferred with Bayesian statisti-
cal methods. This study also shows that various statements made
about the inability of examiners to associate fired bullets to con-
secutively rifled barrels are clearly incorrect. It should be noted
that 686 participants conducted their examinations using conven-
tional optical comparison microscopy, while 11 participants used
some type of ballistics imaging to conduct their examinations.
Using the Schuckers statistical model, posterior mean/median

average examiner error rates were determined to be 0.015%/
0.010% assuming “low” intra-examiner opinion correlation (de-
noted / in this study). These values increased slightly to
0.026%/0.017% and 0.053%/0.036% under “moderate” and
“high” correlation. Inconclusive opinions factored into the analy-
sis by affecting the total number of matches that could be called.
This effectively decreases the sample size for the examiner call-
ing the inconclusive(s).
Although the data did not strongly change prior assumptions

of correlation, increasing correlation did increase the posterior
average examiner error rate assignments and widened the uncer-
tainty (highest posterior density intervals) around the error
assessment. Our most conservative posterior value for average
examiner error rate assumes correlation is high within an exam-
iner’s responses. Given the data collected for this study, we
believe the error rate to be in the range of [1.1 9 10�5%,
0.16%] with 95% probability. Note that all of our computations
started a priori assuming the average examiner error rate was
about 50%, and overall, it was fairly uncertain (i.e., the prior for
paeer was fairly flat between 0% and 100%, cf. Figs 1, 3, and 4).
In circumstances where bullets are deformed or fragmented,

the comparison process may be more difficult. Another limita-
tion of this study is that bullets that were not fired through one
of the ten consecutively manufactured barrels were not included
in the test sets. Their inclusion could conceivably increase the
inferred average examiner error rate. These criticisms are appro-
priate. To accommodate them, we are currently conducting a

FIG. 6––Violin plot graphical summaries of posterior results for paeer|s,
average examiner error rate based on their responses to the test. The black
stars are the posterior medians. The thick black vertical lines are the 95%
highest posterior density intervals.

TABLE 3––Summary of priors on /, the examiner decision correlation
parameter.

“Low
Correlation”

Prior†

“Moderate
Correlation”

Prior‡

“High
Correlation”

Prior§

Mean / 0.05 0.2 0.5
Median / 0.04 0.2 0.4
95% Probability
interval*/

[0.01, 0.1] [0.06, 0.4] [0.3, 0.7]

*These are the 95% highest prior density intervals.
†l = 1, r = 15 fixed hyperparameters.
‡l = 1, r = 3 fixed hyperparameters.
§l = 0.5, r = 0.5 fixed hyperparameters.

FIG. 7––Violin plot graphical summaries of posterior results for /|s,
response correlation.
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redesigned “10-barrel test” which does not suffer from these
issues. The data gathered will ultimately be compared with that
found here.
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